469 research outputs found

    Dynamic changes in H1 subtype composition during epigenetic reprogramming

    Get PDF
    In mammals, histone H1 consists of a family of related proteins, including five replication-dependent (H1.1–H1.5) and two replication-independent (H1.10 and H1.0) subtypes, all expressed in somatic cells. To systematically study the expression and function of H1 subtypes, we generated knockin mouse lines in which endogenous H1 subtypes are tagged. We focused on key developmental periods when epigenetic reprogramming occurs: early mouse embryos and primordial germ cell development. We found that dynamic changes in H1 subtype expression and localization are tightly linked with chromatin remodeling and might be crucial for transitions in chromatin structure during reprogramming. Although all somatic H1 subtypes are present in the blastocyst, each stage of preimplantation development is characterized by a different combination of H1 subtypes. Similarly, the relative abundance of somatic H1 subtypes can distinguish male and female chromatin upon sex differentiation in developing germ cells. Overall, our data provide new insights into the chromatin changes underlying epigenetic reprogramming. We suggest that distinct H1 subtypes may mediate the extensive chromatin remodeling occurring during epigenetic reprogramming and that they may be key players in the acquisition of cellular totipotency and the establishment of specific cellular states

    Hydroxymethylated Cytosines Are Associated with Elevated C to G Transversion Rates

    Get PDF
    It has long been known that methylated cytosines deaminate at higher rates than unmodified cytosines and constitute mutational hotspots in mammalian genomes. The repertoire of naturally occurring cytosine modifications, however, extends beyond 5-methylcytosine to include its oxidation derivatives, notably 5-hydroxymethylcytosine. The effects of these modifications on sequence evolution are unknown. Here, we combine base-resolution maps of methyl- and hydroxymethylcytosine in human and mouse with population genomic, divergence and somatic mutation data to show that hydroxymethylated and methylated cytosines show distinct patterns of variation and evolution. Surprisingly, hydroxymethylated sites are consistently associated with elevated C to G transversion rates at the level of segregating polymorphisms, fixed substitutions, and somatic mutations in tumors. Controlling for multiple potential confounders, we find derived C to G SNPs to be 1.43-fold (1.22-fold) more common at hydroxymethylated sites compared to methylated sites in human (mouse). Increased C to G rates are evident across diverse functional and sequence contexts and, in cancer genomes, correlate with the expression of Tet enzymes and specific components of the mismatch repair pathway (MSH2, MSH6, and MBD4). Based on these and other observations we suggest that hydroxymethylation is associated with a distinct mutational burden and that the mismatch repair pathway is implicated in causing elevated transversion rates at hydroxymethylated cytosines

    MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are critical regulators of transcriptional and post-transcriptional gene silencing, which are involved in multiple developmental processes in many organisms. Apart from miRNAs, mouse germ cells express another type of small RNA, piwi-interacting RNAs (piRNAs). Although it has been clear that piRNAs play a role in repression of retrotransposons during spermatogenesis, the function of miRNA in mouse germ cells has been unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we first revealed the expression pattern of miRNAs by using a real-time PCR-based 220-plex miRNA expression profiling method. During development of germ cells, miR-17-92 cluster, which is thought to promote cell cycling, and the ES cell-specific cluster encoding miR-290 to -295 (miR-290-295 cluster) were highly expressed in primordial germ cells (PGCs) and spermatogonia. A set of miRNAs was developmentally regulated. We next analysed function of miRNA biogenesis in germ cell development by using conditional Dicer-knockout mice in which Dicer gene was deleted specifically in the germ cells. Dicer-deleted PGCs and spermatogonia exhibited poor proliferation. Retrotransposon activity was unexpectedly suppressed in Dicer-deleted PGCs, but not affected in the spermatogonia. In Dicer-deleted testis, spermatogenesis was retarded at an early stage when proliferation and/or early differentiation. Additionally, we analysed spermatogenesis in conditional Argonaute2-deficient mice. In contrast to Dicer-deficient testis, spermatogenesis in Argonaute2-deficient testis was indistinguishable from that in wild type. CONCLUSION/SIGNIFICANCE: These results illustrate that miRNAs are important for the proliferation of PGCs and spermatogonia, but dispensable for the repression of retrotransposons in developing germ cells. Consistently, miRNAs promoting cell cycling are highly expressed in PGCs and spermatogonia. Furthermore, based on normal spermatogenesis in Argonaute2-deficient testis, the critical function of Dicer in spermatogenesis is independent of Argonaute2

    Numerical benchmark campaign of cost action tu1404 – microstructural modelling

    Get PDF
    This paper presents the results of the numerical benchmark campaign on modelling of hydration and microstructure development of cementitious materials. This numerical benchmark was performed in the scope of COST Action TU1404 “Towards the next generation of standards for service life of cement-based materials and structures”. Seven modelling groups took part in the campaign applying different models for prediction of mechanical properties (elastic moduli or compressive strength) in cement pastes and mortars. The simulations were based on published experimental data. The experimental data (both input and results used for validation) were open to the participants. The purpose of the benchmark campaign was to identify the needs of different models in terms of input experimental data, verify predictive potential of the models and finally to provide reference cases for new models in the future. The results of the benchmark show that a relatively high scatter in the predictions can arise between different models, in particular at early ages (e.g. elastic Young’s modulus predicted at 1 d in the range 6-20 GPa), while it reduces at later age, providing relatively good agreement with experimental data. Even though the input data was based on a single experimental dataset, the large differences between the results of the different models were found to be caused by distinct assumed properties for the individual phases at the microstructural level, mainly because of the scatter in the nanoindentation-derived properties of the C-S-H phase.</jats:p

    Time-resolved XUV Opacity Measurements of Warm-Dense Aluminium

    Full text link
    The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order the Fermi energy. Plasma heating and opacity-enhancement is observed on ultrafast time scales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm-dense matter

    5-Methylcytosine and 5-Hydroxymethylcytosine Spatiotemporal Profiles in the Mouse Zygote

    Get PDF
    Background: In the mouse zygote, DNA methylation patterns are heavily modified, and differ between the maternal and paternal pronucleus. Demethylation of the paternal genome has been described as an active and replication-independent process, although the mechanisms responsible for it remain elusive. Recently, 5-hydroxymethylcytosine has been suggested as an intermediate in this demethylation. Methodology/principal findings: In this study, we quantified DNA methylation and hydroxymethylation in both pronuclei of the mouse zygote during the replication period and we examined their patterns on the pericentric heterochromatin using 3D immuno-FISH. Our results demonstrate that 5-methylcytosine and 5-hydroxymethylcytosine localizations on the pericentric sequences are not complementary; indeed we observe no enrichment of either marks on some regions and an enrichment of both on others. In addition, we show that DNA demethylation continues during DNA replication, and is inhibited by aphidicolin. Finally, we observe notable differences in the kinetics of demethylation and hydroxymethylation; in particular, a peak of 5-hydroxymethylcytosine, unrelated to any change in 5-methylcytosine level, is observed after completion of replication. Conclusion/significance: Together our results support the already proposed hypothesis that 5-hydroxymethylcytosine is not a simple intermediate in an active demethylation process and could play a role of its own during early development

    The genome-defence gene Tex19.1 suppresses LINE-1 retrotransposons in the placenta and prevents intra-uterine growth retardation in mice

    Get PDF
    DNA methylation plays an important role in suppressing retrotransposon activity in mammalian genomes, yet there are stages of mammalian development where global hypomethylation puts the genome at risk of retrotransposition-mediated genetic instability. Hypomethylated primordial germ cells appear to limit this risk by expressing a cohort of retrotransposon-suppressing genome-defence genes whose silencing depends on promoter DNA methylation. Here, we investigate whether similar mechanisms operate in hypomethylated trophectoderm-derived components of the mammalian placenta to couple expression of genome-defence genes to the potential for retrotransposon activity. We show that the hypomethylated state of the mouse placenta results in activation of only one of the hypomethylation-sensitive germline genome-defence genes: Tex19.1. Tex19.1 appears to play an important role in placenta function as Tex19.1(−/−) mouse embryos exhibit intra-uterine growth retardation and have small placentas due to a reduction in the number of spongiotrophoblast, glycogen trophoblast and sinusoidal trophoblast giant cells. Furthermore, we show that retrotransposon mRNAs are derepressed in Tex19.1(−/−) placentas and that protein encoded by the LINE-1 retrotransposon is upregulated in hypomethylated trophectoderm-derived cells that normally express Tex19.1. This study suggests that post-transcriptional genome-defence mechanisms are operating in the placenta to protect the hypomethylated cells in this tissue from retrotransposons and suggests that imbalances between retrotransposon activity and genome-defence mechanisms could contribute to placenta dysfunction and disease
    corecore